
SAND 98-1618
Unlimited Release

Printed August 1998

Effective Use of SMSS: A Simple Strategy
and Sample Implementation

David Hensinger
Engineering Sciences Center

Thermal Sciences

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185-1010

Abstract

The purpose of this document is to present a strategy for effectively using SMSS
(Scaleable Mass Storage System) and to distribute a simple implementation of this
strategy. This work was done as a stopgap measure to allow an analyst to use the storage
power of SMSS in the absence of a more user friendly interface. The features and
functionality discussed in this document represent a minimum set of capabilities to allow
a useful archiving interface functionality. The implementation presented is the most
basic possible and would benefit significantly from an organized support and
documentation effort.

i

Acknowledgments
Thanks to Reyna Haynes lending me her expertise on SMSS.

ii

Contents
Introduction ...1

Problem Statement ..1

Weaknesses of the FTP Interface to SMSS ...1
Functionality Needed in the SMSS Interface ..2

Sample Utility Implementation, ftp_save...3

The Functionality of ftp_save..3
An Example Session Using ftp_save...3
The Future of ftp_save...4

Summary ..4

Appendix A: Listing of ftp_save..6

Distribution ..8

1

Introduction
This report documents a simple strategy for effectively using SMSS. It also supplies a
utility called ftp_save, which implements this strategy for single file storage and
retrieval.

Problem Statement

Weaknesses of the FTP Interface to SMSS
The SMSS (Scaleable Mass Storage System) is an automated tape based archiving system
designed for the long term storage of the terabytes of output produced by large scale
super-computer simulations. It is available through an FTP interface from almost every
classified or unclassified networked file system at Sandia. A file is stored to SMSS by
initiating an FTP session with SMSS, making directories and changing directories to
create a storage location, and then putting the file. A file is restored from SMSS by
connecting via FTP, changing directories to locate the file and then ‘getting’ the file. Data
stored in SMSS resides on tapes that are mounted by a robot. The tape retrieval and
mounting process adds significant latency to the storage and retrieval process

The FTP interface to SMSS is clumsy for several reasons:

1. On a UNIX file system, much of the information describing the contents of a file is
carried in the path of the file. For example a file located in
/home/joe_user/overheat_project/simulation/static/ will probably deal with the results
of a static simulation relevant to a project called overheat. In order to preserve this
information in SMSS the entire directory structure needs to be recreated on SMSS
before a file is stored. This is currently a tedious process.

2. Because the data stored to SMSS is often the result of expensive and time-consuming

computations, there should be provisions to prevent the overwriting of data.
Currently, data can be overwritten and deleted in SMSS simply by putting a file of the
same name in the same location on SMSS.

3. The FTP interface does not quickly allow listing of a directory within SMSS. This

makes it difficult to know what has been saved to SMSS from within a file-based
directory structure.

4. An additional weakness of SMSS, which is not directly related to the FTP interface, is

that the connection to SMSS goes under different names on different systems. The
variety in the naming of the SMSS connection is necessary to allow different
hardware connections to SMSS from the same file system; however, the provision of
at least one domain name that resolves to an SMSS session on each system would
greatly simplify SMSS access for users who routinely work on multiple file systems.

2

One way to provide this may be an environment variable set in a system.cshrc file
defining the variable DEFAULT_SMSS to the most reliable domain name for the
SMSS connection from that system.

Functionality Needed in the SMSS Interface
The interface to SMSS should satisfy several minimum requirements described here.
These requirements are satisfied by the sample implementation of ftp_save. Ftp_save
creates a pointer file (an executable script) that saves and retrieves files. It does not itself
directly perform the saving and retrieving function.

When a file is saved to SMSS a pointer to that file should remain in the directory on the
disk-based file system from which the file was sent to SMSS. This provides a constant
reminder to the user of what has been stored on SMSS from that directory. Without this
pointer a user must connect to SMSS and cd down the directory structure to list the
contents of a directory. The latency involved in SMSS access prevents rapid queries.

The pointer remaining in the directory of origin should include all the information
required to retrieve the file from SMSS. If the pointer includes all of this information,
then the retrieval process and storage process can be automated, and it is much less likely
the file’s location on SMSS will be forgotten by the user.

As long as all of the information required to store or retrieve a file is in the pointer to the
file, then it should be possible to copy the pointer to another directory, tar it into an
archive, or even move it to SMSS without its becoming invalid.

The pointer should have a unique name based on the name of the file saved to SMSS.
This prevents overwriting pointers with new pointers as more files are saved to SMSS.
This becomes useful when numerous data files are generated in the same directory and
then stored on SMSS.

When a file is saved to SMSS its it should automatically be saved with the same relative
path from /home or / as it had on the directory system of origin. This duplicates the
contextual information which helped to define the contents of the original file. An
alternative to replicating directory structures on SMSS is to add the directory structure
information to the file name.

A file saved to SMSS should be saved with a unique name on SMSS to prevent
overwriting data. This does not mean that the file needs a unique name before it is saved
to SMSS or that it must be retrieved with the unique name it bears on SMSS. Unique
name extensions such as the day, date, and time are preferred over unique garbage
strings.

3

Sample Utility Implementation, ftp_save
The sample implementation discussed here satisfies all of the requirements listed above
for the archiving and retrieval of a single file to and from SMSS. The name of this utility
is ftp_save.

The Functionality of ftp_save
The process of using ftp_save as a front end to SMSS begins with the invocation of
ftp_save with the file to be saved as an argument. Ftp_save creates an executable script
file that has several functions: it will automatically store the target file on SMSS, it will
automatically retrieve the target file from SMSS, and it serves as a movable pointer to the
file stored on SMSS

The file created by ftp_save is given a unique name based on the name of the original
target file. This name will also be the name of the file when it is stored on SMSS. The
name consists of the original file name with the time, day of the week, month, and
calendar date and .image postpended. When the pointer file is invoked, it looks to see if
the target file is in the present working directory. If the file is in the present working
directory, it connects to SMSS via FTP, replicates the present working directory on
SMSS, and saves the target file to SMSS under its own unique name. If the file is not in
the present working directory, it connects to SMSS via FTP and changes directory to the
location where the file was saved and retrieves the file into the present working directory
under its original name.

After a file has been archived to SMSS using a script produced by ftp_save, the file can
safely be deleted on the local disk based file system. The executable script remains as a
pointer and automated retrieval method for the archived file. All of the information
required to retrieve the file is stored inside the script and is independent of the location
name of the script file. The file can be renamed or moved and it will still recover the
stored file from SMSS provided it can connect to SMSS. Invoking ftp_save does not
store or retrieve the file. Invoking the script which is the pointer file does that.

Part of the reliability of the strategy used by ftp_save is due to the way it creates
executable scripts to do all of the work. Any modifications to ftp_save have no impact
on pointer files previously created with earlier versions of ftp_save. Ftp_save does not
even need to be available for the pointer files to function.

An Example Session Using ftp_save

A sample session using ftp_save to store and retrieve a file named huge_file to and from
SMSS would look like this:

%ls
huge_file

4

%pwd
/home/joe_user/working
%ftp_save huge_file
%ls
huge_file huge_file.1503Thu_May2198.image
% huge_file.1503Thu_May2198.image
Name (smss1-atm:joe_user):Passive mode off.
Verbose mode on.
257 MKD command successful
250 CWD command successful.
257 MKD command successful.
250 CWD command successful.
200 PORT command successful.
150 Opening BINARY mode data connection for
huge_file.1510TheMay2198.
226 transfer complete.
221 Goodbye.
%rm huge_file
%ls
huge_file.1503Thu_May2198.image
% huge_file.1503Thu_May2198.image
Name (smss1-atm:joe_user):Passive mode off.
Verbose mode on.
250 CWD command successful.
250 CWD command successful.
200 PORT command successful.
150 Opening BINARY mode data connection for
huge_file.1510TheMay2198.
226 transfer complete.
221 Goodbye.
% ls
huge_file

It was assumed in this session that the user has already gotten a kerberos ticket to allow
access to SMSS. After this session, a copy of huge_file called
huge_file.1503Thu_May2198.image remains on SMSS in the directory
/home/joe_user/working

The Future of ftp_save
Ftp_save is not intended to be the foundation of a comprehensive data archiving
environment, but it is intended to demonstrate that significant functionality can be
provided to analysts by some relatively simple tools. Analysts need a supported and
documented archive management environment that surpasses the functionality of
ftp_save. In the absence of a supported environment, ftp_save is a quick and dirty tool,
available now, to help analysts manage data archiving.

Summary

A strategy for effective use of SMSS was presented in the form of a set of minimum
requirements for a useful interface. An implementation of a utility called ftp_save

5

satisfying these requirements was presented. Ftp_save automates the context based
archiving and retrieval of files to and from SMSS, and it provides a pointer to stored data.
It was built quickly to serve the pressing needs of analysts who required a way to manage
mass storage within their problem solving environment. Although it could benefit from a
substantial re-write, its simple strategy does allow it to reliably provide a significant
amount of functionality.

6

Appendix A: Listing of ftp_save

#!/bin/csh
#
ftp_save - a dumb as nails ftp script builder to save a file to smss
#
ftp_save filename
#
ftp_save creates a file called filename.hourminutemonthdayyear.image
this file when executed looks for filename and if it exists ftp's
the file to smss in the same directory location it is currently
located in. If the file filename does noe exist then it gets
the file from smss.
#
this allows versions of the same file to be stored on smss
and keeps a record of the stored file as the .image file
#
#
Feb 5 4:44 PM
David Hensinger Department 9622 845-0961
#
#
#
set the_time=`date +%H%M%a%b%d%y`
echo $the_time
set starters=`pwd | tr "/" " "`
echo "#\!/bin/csh" >! $1.$the_time.image
echo "if (-f " $1") then" >> $1.$the_time.image
echo "/usr/local/bin/ftp smss1-atm << eoi" >> $1.$the_time.image

whoami >> $1.$the_time.image
echo "binary" >> $1.$the_time.image
echo "verbose on" >> $1.$the_time.image

foreach item ($starters)
 echo "mkdir "$item >> $1.$the_time.image
 echo "cd "$item >> $1.$the_time.image
end
echo "put " $1 $1.$the_time >> $1.$the_time.image
echo "quit" >> $1.$the_time.image
echo "eoi" >> $1.$the_time.image
echo "else" >> $1.$the_time.image
echo "/usr/local/bin/ftp smss1-atm << eoi" >> $1.$the_time.image
whoami >> $1.$the_time.image
echo "binary" >> $1.$the_time.image
echo "verbose on" >> $1.$the_time.image
foreach item ($starters)
 echo "mkdir "$item >> $1.$the_time.image
 echo "cd "$item >> $1.$the_time.image
end
echo "get " $1.$the_time $1 >> $1.$the_time.image
echo "quit" >> $1.$the_time.image
echo "eoi" >> $1.$the_time.image
echo "endif" >> $1.$the_time.image

chmod +x $1.$the_time.image

7

8

 Distribution

Internal Distribution:

1 MS 0151 G. Yonas, 9000

1 MS 0841 P. Hommert, 9100

1 MS 1002 P. J. Eicker, 9600

1 MS 1010 M. E. Olson, 9622

1 MS 1010 A. L. Ames, 9622

1 MS 0835 T. C. Bickel, 9113

10 MS 0835 D. M. Hensinger, 9113

1 MS 9018 Central Technical Files, 8940-2

2 MS 0899 Technical Library, 4916

2 MS 0619 Review & Approval Desk, 12690 For DOE/OSTI

	Abstract
	Acknowledgments
	Contents
	Introduction
	Problem Statement
	Weaknesses of the FTP Interface to SMSS
	Functionality Needed in the SMSS Interface

	Sample Utility Implementation, ftp_save
	The Functionality of ftp_save
	An Example Session Using ftp_save
	The Future of ftp_save

	Summary
	Appendix A: Listing of ftp_save
	Distribution

